
Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
Quantitative Evaluation Methodology for Dynamic, Web-based
Collaboration Tools

Chris Furmanski, David Payton, and Mike Daily
HRL Laboratories, LLC

(chris, payton, mjdaily}@hrl.com
Abstract

One of the primary hurdles to effectively
evaluating adaptive software is that its very use
alters the system from one moment to the next.
Here, we developed and implemented an
empirical-evaluation methodology that was
successfully tested on an adaptive, web-based
collaboration tool. Subjects participated in an
"open-book" exam, spending limited amounts of
time on the web researching a generic, non-
technical topic, such as jazz or baseball, and
were later tested on the information they had
found. We employed objective, user-centered
metrics to quantify subjects’ ability to make
enhanced web searches when using the tool.
Test results from 8 subjects showed that our
approach could reliably measure differences in a
user’s performance for different collaboration
algorithms. Our protocol demonstrated that
history-dependent tools can be evaluated without
large subject pools and without extensive
database preparation if careful evaluation
design is utilized.
0-7695-2056-1/04 $
1. Introduction

Dynamic software and adaptive user interfaces
offer a host of advantages over static systems by
enhancements in system appearance, content,
storage, usability, and/or functionality. However,
the process of evaluating such adaptive
applications is challenging because tool use
during testing inherently alters the tool’s
performance.

Under the auspices of the DARPA Intelligent
Collaboration & Visualization / Information
Management (ICV/IM) program, HRL
Laboratories developed an adaptive software tool
to aid human collaborative activities [7]. During
the initial development of PackHunter, ad-hoc
tests of system functions were performed,
although carefully controlled user evaluations
were not conducted because of difficulties
encountered trying to evaluate a dynamic system.
The work described here developed a robust
evaluation protocol for a unique class of adaptive
collaboration-enhancing software and utilized
this protocol to test a previously developed
history-dependent collaboration tool.
• Select a group to share
trails with

• Highlight current user
locations on paths

• Mark pages for others as
interesting

• Jump to pages visited by
others

• Make user paths overlap at
common pages or view
them independently

Leading
Edge

Interesting
Page

Group
Selection

Figure 1: PackHunter’s “collaborative browsing” interface used to visualize different
websites (shapes) visited by different users (colors) in a collaborative environment.

PackHunter interface functionality
17.00 (C) 2004 IEEE 1

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
1.1. History-dependence

We term the dynamic nature of adaptive tools
“history dependence,” acknowledging the fact
that the very use of the tool alters the tool
performance from one moment to the next.
PackHunter, uses algorithms that are based
entirely on techniques for mining information
from the stored and current click streams of its
users. As a consequence, the performance of
PackHunter depends on both the retrograde
activities of people who have used the tool
previously and the anterograde nature of the tool
that once it is used, the tool becomes altered for
the next set of users.

Another important consequence of history
dependent systems is that they are sensitive to
both the quantity and quality of historical data,
often showing a critical-mass effect, where
meaningful outcomes are not observed without a
sufficient amount of prior use that constitutes
normal or representative use of the system.

Finally, we distinguish between two types of
history dependent effects: first-order effects (the
result of users’ actions that directly alter a
history dependent tool or its databases) and
higher-order effects (those that arise in a
collaborative environment when the course of a
user’s events are influenced by other users’
actions). In the case of PackHunter, it is expected
(and in fact, desired) that the tool should exhibit
both first and higher-order effects, changing both
the toll and the way users interact with each
other.

2. Prior work

The term “history dependence” has been
identified as a major issue of experimental
testing of interactive dynamic systems such as
simulators and adaptive interfaces [6]. Newell
and Simon (1972) comment that “because of the
strong history dependence of the phenomena
under study, the focus on the individual, and the
fact that much goes on within a single problem-
solving encounter, experiments of the classical
sort are only rarely useful. Instead, it becomes
essential to get enough data about each
individual subject to identify what information
he has and how he is processing it" (p. 12). Prior
use of empirical evaluation has been
implemented in web-based navigation using
adaptive hypertext based on dynamic user
modeling where hypertext available to the user
changes based on experience [4]. Practical
0-7695-2056-1/04 $1
guidelines, generic experimental design issues,
and general methodological suggestions have
also been outlined for user-adapted user-model
systems [2]. Incremental testing procedures have
been adopted as a model for object-oriented
programming of adaptive software, where
alternations in software class structures may
change over time [5].

3. PackHunter testbed

PackHunter uses the click streams collected in
collaborative web browsing to find users with
similar click streams, thus enabling the user to
discover new potential collaborators and/or
someone who might be working on a related
problem. This evaluation focused on two of
PackHunter’s primary features geared towards at
enhancing web-based collaboration: (1)
collaborative browsing: a function to help users
perform coordinated team exploration of
hyperlinked data and (2) related collaborators: a
function aimed at helping users find others who
share their interests.

 The collaborative browsing (CB) feature was
designed for people who already know others
with whom they need to collaborate. For these
people, PackHunter provides the means for users
to monitor the click streams of their group or
team in real time. This real-time collaborative
browsing feature allows users to join an interest
group by interacting with browsing activity that
represented visually by trails that consist of
nodes and links that represent web pages and
associations between web pages (as shown in
Figure 1).

The find-related collaborators (RC) feature
provides aspects that are complementary to
collaborative browsing. RC enables users to
identify others with common interests based on
passive observation of their information access
patterns. This can serve as an important tool to
aid rapid formation of ad-hoc teams. The RC
mechanism in PackHunter works through real-
time analysis of trail histories collected from the
CB tool.

4. Evaluation issues

The primary goal of this evaluation was to
determine how PackHunter impacted a user’s
information gathering ability relative to not using
the tool. A major challenge of the evaluation
was to measure the degree to which the two
7.00 (C) 2004 IEEE 2

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
independent experimental conditions (RC and
CB) could be compared to a tool-less baseline
/control condition. The selection of the proper
metrics was critical for effectively measuring
human behavioral performance (in the context of
determining how PackHunter’s features
improved people’s information-gathering
performance). However, the operational
definition of descriptors such as “improvement,”
here is an important prerequisite to defining the
appropriate metrics.

4.1. User-centered judgments

Judging the amount or quality of useful
information contained on any given web page is
not trivial. Information quality is directly
relevant because it could serve as a valuable
metric for determining if PackHunter improved
user’s search performance. Techniques, using
information theory for example, are used to
quantify quality and quantity information in
technologies such as search engines [3].
Algorithmic quantification of information is
often an "information-centered" approach (i.e.,
focusing solely on the information being
analyzed (such as on web pages) but is
independent of the user's interpretation of the
data).

Instead of using information-centered
techniques, we employed a “user-centered”
approach that uses human performance as a
second-order estimate of information content.
User-centered measures take the user's
understanding of the information into account,
which better reflects the desired outcome in the
real world; measuring how much the tool
improved user knowledge is the real goal, not
simply measuring increased information content
on a web page. Such user-centered techniques
are commonly used in cognitive psychology,
where particular measures of human behavior are
used as proxies for psychological/cognitive
processes that are not directly observable; the
human user serves as a “black-box” in which
behavior serves as an indirect measure of
information quality. Our user-centered approach
was particularly useful in evaluating PackHunter
because it allowed for collection of information
improvement (due to the tool) in measures that
were directly relevant to web use.

User-centered methodologies can be classified
as either subjective or objective measures. We
considered several subjective metrics to measure
user behavior, including measures of
0-7695-2056-1/04
participant's qualitative measure of tool utility,
report generation ratings (in which participants
wrote reports based on information found and
then rated the quality of other user's reports), and
user ratings of the suitability of collaborator
matches found by the tool. Ultimately we
decided to utilize more objective measures that
allow for improved experimental controls and
more robust statistical treatments.

4.2. Objective measures

Since we opted to take a more objective
approach to quantifying information quality, we
considered a wide range of objective tests of
user-centered information quality. Objective
tests we considered included a series of fact-
finding trials (a "treasure hunt" design) in which
participants were instructed to find as many
predefined facts (or a series of answers to very
specific questions about a range of topics)
somewhere on the web in a limited time (e.g.,
"What is the distance in KM between Cairo and
Honolulu?" or "What is the total land area of
Belarus?"). This approach was attractive in that
it would give us a quantitative performance
metric (i.e., how many questions the participant
got right), however it seemed that specific, well
phrased search engine queries would likely
produce the answer to such trivia questions
without lengthy searches thus eliminating the
need for the tool. Other problems existed since
this approach might cause user-search activity to
focus on very narrow pockets of information,
and search performance might have too heavily
relied on the ease to which the specific questions
could be answered more than anything
specifically related to our tool.

A test-like measure had many attractive
features (e.g., questions could be time limited
had objective correct or incorrect answers, etc.),
but concerns that the specificity of question topic
had would significant impact on how well the
tool would perform. For example, very specific
question types, such as in a "treasure hunt"
design, might not be well suited for measuring
RC or CB features, because simple search engine
queries could provide answers more quickly than
PackHunter.

Other question types, such as questions with
ambiguous words that might confuse search
engines (e.g., the query "When did Bill Clinton
last visit New Jersey?" is ambiguous to a search
engine as many of the items returned will have to
do with legislation (bills) in the city of Clinton,
$17.00 (C) 2004 IEEE 3

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
New Jersey) might play more into PackHunter's
strengths, but these types of questions were
tough to operationally define and it was difficult
to generate a number of these questions without
first determining if each question does cause
search engines to fail (i.e., did the search engine
fail to produce the correct answer in the first few
pages of hits). Another fear was that because the
RC function required significant overlap between
users searches (i.e., visiting the same websites or
searching for the same type of information), it
would be difficult to generate a series of such
questions with the additional constraint of having
to have some of the question topics be related.

In the end, we decided that searches guided by
open-end topical research questions (e.g., "Find
out everything you can about jazz,") would
provide a more thorough type of search that
could not be entirely bypassed by simple
keyword search-engine searches. Further,
instead of providing participants with a list of
questions (that would be used as the objective
measure) before a search session, in this case,
participants were instructed to find as much
information as they could about a the general
search topic (e.g., jazz or baseball).

Our approach was paired with an instruction
phase in which participants were informed that a
test would follow in which they could only use
web pages found during their search to answer
the test questions. The specific test questions
were only provided after the participant
completed the search. Thus, by providing the
questions after the search, participants could not
simply find the needed answers with a search
engine. Performance on the test would reflect
how much information participants were able to
find using the tool. To assure that the test
evaluated the tool and not the user’s memory
capacity, we allowed the user to refer back to
any web pages encountered during their search.
This approach was analogous to an "open-book"
exam, in which participants used existing
information (i.e., web pages previously found
during the general topical search) to answer the
questions but were prevented from looking for
new information.

4.3. Background database

The development of a practical evaluation
methodology involved overcoming the
complications involved with history dependence.
PackHunter must have material in its database in
order to produce meaningful results. Thus, one
of our primary challenges was to develop an
0-7695-2056-1/04
evaluation methodology that, while constrained
by a limited time schedule and limited user
population, avoided the need for a very large
database containing the search histories of
thousands of users.

This critical-mass effect is particularly a
problem in relation to the use of PackHunter’s
find related collaborator (RC) function. The RC
algorithm is computed entirely from data
gathered by prior users, so in order for this
feature to work, a sufficiently large database of
prior users is required. The primary mechanism
used to find new information with RC is "scent
diffusion." In order to find related information
between users, scent diffusion requires multiple
users to have visited some of the same web sites
(thus spreading the user's "scent" to other pages).
Therefore, in order for RC to be effective, there
must be some overlap in several users' search
history. With just a few users, and just a short
time to develop extant browsing histories, it was
clear that open-ended searches on the web were
very unlikely to create any significant overlaps
of user trails.

We considered several options for developing
a usable background database. One idea was to
recruit an existing large user community, such as
newsgroup users or medical researchers, to use
PackHunter. Another idea was to link the
software to an internal proxy server, so that
PackHunter could, in the background, track all
web usage for HRL employee volunteers.
However, such an approach would not
incorporate the ability of users to rank pages
(another type of PackHunter functionality) nor
would it allow users to define the topics of
particular searches. Had there been more time,
many of the problems could have been solved
and these approaches might have been more
feasible.

We finally decided that the best way to
address the critical mass problem for our
evaluation was to limit search to particular
subject domains. We identified a set of subject
domains (e.g., French Impressionism or Jazz)
such that each domain established a unique
subset of information that was narrow enough to
limit the breadth of information a user might
encounter, but broad enough to allow for a wide
range of distinct search activities. Within each
subject domains we selected a number of specific
topics that might or might not overlap depending
on semantic relations between these topics.

To generate our background database, we
developed a strategy whereby a number of users
who were not part of our test subject pool were
 $17.00 (C) 2004 IEEE 4

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
each given a topic to investigate within one of
our selected subject domains. For example,
given the subject domain of French
Impressionism, users were asked to gather all the
information they could find on topics related to
French Impressionism such as: Monet, light,
Fauvism, galleries, Paris, etc. While each of
these topics alone could be quite general,
focusing the search within the confines of the
particular subject domain of French
Impressionism greatly focused the types of web
pages that would be encountered. It also ensured
that some degree of overlap would occur
between the search trails through these topics.
We made sure that none of the users who
participated in generating the background data
were used in the final evaluation. This way, no
prior experience gained with respect to a
particular background topic would be likely to
influence a subject’s performance.

Normally, PackHunter’s CB function is used
by a group of people looking simultaneously for
information about the same topic. However, our
open-book test-taking format needed to disregard
the multi-user interaction aspects of CB because
allowing users to view the search activities of
prior users could have impacted the information
gathering performance of a new user. To prevent
this problem, the background data for tests of the
CB function were generated by user’s searches
on the specific topics that would eventually be
given to the test subject. At testing time, these
search results were presented to actual test users
via the CB function so as to appear that
numerous other collaborators were already
working on the same search task.

4.4. Freezing the background

It was also necessary to establish a way to
nullify history-dependent changes that occur to
the database when it was used from one test user
to the next. We also needed to ensure that the
background database would not change from one
user’s trial to the next; we did not want the
activities of a user in one trial to indirectly alter a
later user’s trial. Similarly, during the
evaluation, we wanted to be able to have
different users perform searches on the same
topic without being able to see that some other
user had done the exact same search sometime
before them. To obtain these capabilities, we
added save and load features to PackHunter.
These features allowed us to extract all of the
relevant information in the PackHunter database
and save it to an output file. At any time later,
0-7695-2056-1/04 $1
we could reload this information back into the
database and restore the tool to its previous state.
Incorporating such a feature in the development
of future adaptive / history-dependent systems
would be strongly advised. For the purposes of
our experiments, we saved versions of the
database that only contained the background
searches. When beginning new evaluation trials
we simply reloaded these saved databases to
serve as the same, controlled starting point for
each user.

5. Empirical evaluation

We decided on a standard experimental design
in which user performance for the test conditions
(in this case RC and CB) were compared to
control conditions (where participants performed
searches using the same PackHunter interface
but not using the RC or CB functionality). Thus,
the basic contrast compared participants'
performance on the "open-book exam" in
experimental conditions (after using RC and CB)
with participants' performance on a similar exam
in which participants used the tool (but not the
added RC/CB functionality) for the control
conditions. If participants answered more
questions correctly using either RC or CB than in
the control conditions, we would conclude that
the experimental conditions provided users with
better information when using the RC or CB
functionality than when they did not.

We decided upon a within-subjects design in
which each participant perform all conditions (as
opposed to a between-subjects design, which has
distinct participants for each condition). While a
within-subjects design would take more of each
participant's time, it had several key advantages.
First, because each participant performs each
condition, it drastically reduces the total number
of participants required (in this case by a factor
of 4). This design also has the added bonus of
reducing the between-subject variability (the
natural variance that arises from between
different individuals), giving certain types of
statistical comparisons more statistical power.

5.1. Testing approach

Our basic experimental design included 2
experimental conditions (RC and CB) and 2
control conditions. Thus for each condition, a
separate search topic would be required (i.e., 4
distinct topics would be needed). Keeping in
mind that PackHunter is a web-based tool and
7.00 (C) 2004 IEEE 5

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
that our testing procedure used an “open-book”
exam as the primary measure of participant’s
performance, we were forced to find search
domains that had both an extensive exposure on
the web and numerous related topics with which
we could populate the database.

We first settled on four broad topical
groups/categories (French Impressionism, Jazz,
Baseball, and Silent Film) from which specific
topics would be chosen. Each group was
assumed to have roughly the same information
content and internet exposure (no norms for
internet-based information content could be
found). Within each group, a single search topic
was chosen and randomly assigned to a
particular condition pairing (either RC-Control
or CB-Control). Each of the four search topics
were confined to famous people that were
representative of each group/category selected.
We intentionally restricted the topics to famous
people so that similar question syntax could be
used for each topic despite the specifics (e.g.,
when was person X born?). The topic pairings
selected (randomly) were Charlie Chaplin (silent
film star & director) and Babe Ruth (baseball
player) for the CB-control condition, and
Edouard Manet (French Impressionist) and Louis
Armstrong (jazz trumpeter) for RC-control.

5.2. Question format

After selecting the specific topics (individual
famous people), lists of questions were
generated. Each list consisted of 30 questions
and was based on either biographical (e.g.,
"When was person X born?") or career-oriented
information (e.g., "When was Y's professional
debut?"). While questions were intended to be
approximately of equal difficulty, differences in
difficulty between question lists were negated
using standard counterbalancing techniques
(described below).

The questions were generated as multiple-
choice questions; participants did not have to
generate the correct answer, but instead, they
were to choose from a pair of answers, one of
which was correct. This multiple-choice
approach had several advantages. First, the goal
of this testing procedure was to quantitatively
judge the quality of the information participants
found using the tool, not to measure the test-
taking ability of the participants, per se. Thus,
we wanted to make the testing procedure as
simple and as straight forward as possible.
0-7695-2056-1/04 $
Second, because participants performed four
topical searches (and thus, had four tests to take)
we hoped to limit the amount of time participants
would need to dedicate to the actual test-taking
procedure. So, by providing participants with
possible answers, we hoped that the confined
search space during the testing procedure would
speed up their search, thus limiting the
evaluation procedure to a reasonable amount of
time. It should be noted that participants were
not given the questions (or answers) before the
search procedure and were instructed not to
guess; this will be addressed in more depth,
below (see Testing Procedure).

We considered a large range of alternative
testing formats, including simple "fill-in-the-
blank" questions and a more subjective approach
that used peer-reviewed report writing. We also
thought a good approach would be to generate an
algorithm that would automatically search the
text from the web pages found by participants.
This approach would have alleviated the
participants from actually having to perform the
tests, thus avoiding variability between
participant test-taking strategies. This algorithm
approach would have also been more efficient as
it would have taken less time per participant, but
this automated system was never implemented
due to lack of time for algorithm development.

5.3. Condition counterbalancing

For a given participant, topics were assigned
to particular conditions following standard
counterbalancing methods (in this case, it was a
modified Latin-square design) [9]. The goals of
counterbalancing are twofold. First,
counterbalancing assures that the conditions are
presented in different orders (in a controlled
fashion) so to avoid confounding results that
might arise from running in a particular order (so
called order effects). Second, counterbalancing
is used to assure that each topic is equally
assigned to the various conditions, so the final
results (calculated by determining differences
between the experimental and control conditions)
are not confounded by differences in the
difficulty of the topics assigned to each
condition. The following table displays how
each topic was paired with each participant in a
counterbalanced manner across 4 different
participants.

It should be noted that a complete
counterbalancing (where each topic is assigned
to each condition) could not be achieved here
17.00 (C) 2004 IEEE 6

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
because only two background databases could be
generated in the allotted time (instead, three
would have had to be generated - see Specific
Database Generation). However, because the
critical comparisons were between each of the
experimental conditions (RC and CB) and the
control groups (in this case, one control group
was assigned to each experimental group),
suitable counterbalancing was achieved within a
pair of conditions (RC-control or CB-control).

5.4. Specific database generation

Because PackHunter is a "history dependent"
tool, we needed a functional database with prior
searches in order to use the key RC and CB
features of the tool. To create suitable
background data for testing the RC function, we
chose to populate two of our pre-selected subject
domains: Jazz and French Impressionism. We
had a group of volunteers perform a series of ten
independent directed searches on a range of
specified topics within each of these categories.
Care was taken in the choice of topics to assure
that they were not identical to the topics that
were to be used in testing. Since the volunteers
were not expected to make use of PackHunter
RC or CB features, several people could perform
these searches in parallel without influencing
each other. This allowed for a rapid and
homogenous completion to populating the
database.

Creating the background data for the CB
function was a simpler task. For CB, we needed
several searches that were from both the same
subject domain and on the exact same topic. We
selected two such topics for generating the CB

Orders 1 2
1 VR-EM Control-EM
2 Control-LA VR-LA
3 CB-CC Control-CC
4 Control-BR CB-BR

3 4
1 CB-BR Control-BR
2 Control-CC CB-CC
3 VR-LA Control-LA
4 Control-EM VR-EM

Table 1. A modified Latin-square
counterbalancing for different orders
(columns) using combinations of
different conditions and different search
topics used between subjects (rows).
0-7695-2056-1/04 $
background data and did ten searches for each.
We used Charlie Chaplin (CC) from the Silent
Film universe and Babe Ruth (BR) from the
Baseball domain as our two topics.

5.5. Outcome and limitations

Our attempts to fill the background database
were sufficient to obtain independently
counterbalanced experiments for CB and RC.
Such a design is adequate to independently test
CB and RC against control conditions, but is not
suitable for comparing CB and RC with each
other. In this design, two sets of background
searches (on two different domains) were
collected for RC tests, and two sets of topic
searches were collected for CB tests. This gave
us two topics to test with RC and two to test with
CB. The independence of these tests meant that
they each had to have their own control
conditions. Because of this, it was necessary to
test each user under two control conditions in
order to obtain complete counterbalancing.

Had we been able to populate our background
database more fully, each topic would have been
used both as a control condition and an
experimental condition (one typical type of
counterbalancing). This way we would have only
needed 1 control condition (instead of 2) which
would have required less testing for each
participant. Under that more ideal design, each
of the two experimental conditions would have
been compared to the same control condition,
requiring data to be generated for 3 topics (one
for the control and two for the experimental
conditions). Each of the databases would have
been assigned to different conditions
(RC/CB/Control) in a between-subjects manner
in order to account for potential difference in the
difficulty/quality of each dataset.

5.6. Testing procedure

Participants were 8 graduate students (5 male,
3 female) that participated for monetary
compensation. All participants signed voluntary
consent forms.

5.6.1. Introduction phase

The experiment began by introducing the
participant to the PackHunter interface. The
main interface (which displayed a spatio-
graphical representation of the search history)
remained open and was used in conjunction with
17.00 (C) 2004 IEEE 7

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
a web browser (Netscape Navigator 4.x) that was
also open during all phases of the evaluation.
Participants were shown how to interact with the
interface, what the symbols on the interface
meant, how to mark useful pages, and how to use
the other PackHunter features (i.e., CB and RC).
Participants were also given 10 minutes to
perform a supervised sample search (on the topic
of NASA's Skylab project) in which the
participants could get hands-on familiarity with
the interface and its features. These data were
not included in the data analyses nor saved to a
database (as to not affect subsequent searching).

5.6.2. Searching phase

After the Introduction phase, participants were
given a set of instructions to read while the
experimenter verbally explained the same
instructions. The instructions explained that the
participants were to use specific features of the
PackHunter tool during certain times during one
of four successive web searches on particular
famous people. Participants were told to find as
much material on each person as possible as an
"open-book" multiple-choice test would follow.
The participants performed four successive
searches on the topics assigned in a particular
order (determined from the counterbalancing)
before starting the testing phase.

During the search, participants were also
instructed to annotate particular web pages as
useful or important using additional PackHunter
page-marking capabilities. This allowed the
participants to return to these pages during the
test phase, enabling the participants to answer
the subsequent test questions. Participants were
also informed to work quickly and that they
didn't need to learn or memorize any of the
information because it would be accessible to
them during testing. Participants were given up
to 60 minutes to perform each of the four
searches (although no participant used the entire
time).

Participants performed 1 search using the CB
feature, 1 search using the RC feature, and 2
controls searches which used the tool interface
for tracking and page marking, but did not use
either RC or CB features. Before each search,
the generic baseline database was reloaded to
assure that the history-dependent nature of
PackHunter utilized the same collection of
information at the start of each search. The
baseline database contained all of the
background searches performed beforehand by
volunteers (see Database Generation) that
0-7695-2056-1/04 $
allowed the CB and RC features to work. After
each search, the new information was saved out
to a separate database, and the old baseline
database was reloaded before the next search.

5.6.3. Testing phase

After the participants finished all four of the
searches, participants began the testing phase of
the evaluation. The testing phase either occurred
on the same day or within 4 days of the
searching phase. At the beginning of each test,
the appropriate database, which contained the
participant's prior searches, was reloaded. This
allowed the participant to view the spatio-
graphical representation of their prior web
search, including the pages they marked as
important. Participants could then simply click
on a desired symbol in the spatio-graphical
representation and the corresponding webpage
would appear in a browser opened in another
window.

The participants read the instructions for the
testing phase and were also given a verbal
explanation by the experimenter. During the
testing phase, participants were instructed to
work as quickly as possible, but above all else,
they were instructed not to guess on any
question. They were instructed to only answer
questions to which an answer could be found on
one of the previous websites they had visited. In
order to assure that participants did not guess on
a question, the participants were also instructed
to write the URL of the page they used to find
the answer to the question. (This URL could be
used to verify their answers and also provided
some idea as to how many of the websites were
actually useful for this sort of task.) Other
approaches for this verification process could
have incorporated a web-based form into which
participants could have cut and paste URLs
(which might have saved the participants time
during testing).

Participants were also given examples of test
strategies and, for the sake of uniformity, were
instructed to select a single strategy, using the
same strategy for each test. One example
strategy was to use the browser's find feature to
search for key words (from either the question or
either of the answers) in a given web page to
reduce the amount of time participants might
need to visually scan a webpage to see if it
contained the relevant information. Participants
were given 20 minutes to take each test, and
were also required to count the number of
questions answered in 5-minute intervals. This
17.00 (C) 2004 IEEE 8

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
would provide an estimate of whether the time
limit of 20 minutes was sufficient to
exhaustively explore the participant's collection
of web sites found during the search phase. Such
data could distinguish if the participants had
exhausted their ability to find pertinent facts (i.e.,
they might not be able to answer any more
questions between 15 and 20 minutes) or if they
were still finding relevant information (i.e., they
continue to answer more questions after each
interval).

5.7. Results

The main focus of this evaluation was to test
if, all other things being equal, particular features
of PackHunter, namely the View-Related (RC)
and Collaborative-Browse (CB) features,
improved the quality and content of specific
information found through searches on the web.
In our evaluation, information quality was
objectively quantified by measuring participant's
performance on a series of multiple-choice tests
based on their web searches. Thus, after the 8
participants finished the testing procedure, both
the test performance and web-usage statistics
(e.g., number of pages visited, marked as
important, time spent per page, etc.) were
analyzed to see if differences in participant's test
performance existed between the experimental
(RC & CB) and control groups.

The key finding is presented in Figure 2. We
found the (RC) searches yielded a reliably higher
mean performance (64.6% (19.375/30
questions)) than did the control group (52.5%
(15.75/30 questions)), t(7)=3.34, p=0.01238
(paired, 2-tailed t-test with 7 degrees of
freedom).

Analysis of the collaborative-browsing (CB)
searches (50.4% (15.13/30)) trended towards
being worse than the corresponding control

0%

10%

20%

30%

40%

50%

60%

70%

80%

RC RC-control CB CB-control

Condition

P
er

fo
rm

an
ce

 (
%

 c
o

rr
ec

t)

RC
RC-control
CB
CB-control

Figure 2: Mean performance for all
conditions.
0-7695-2056-1/04 $
group (52.9% (15.875/30)), but the differences
were not statistically different, t(7)=0.30, p>0.05.

Analysis of performance for given topics
showed that there was not a reliable difference in
difficulty of the tests used in RC-control
conditions: between EM (16.75/30) and LA
(18.5/30), t(7)=1.18, p>0.05. Analysis of the
other groups (CB & control2) showed that BR
(18.25/30) was reliably easier than the CC topic
(12.875/30) (t(7)=3.80, p=0.0067). However,
because the topics were counterbalanced across
the CB and CB-control conditions, this did not
impact the results of the tool evaluation.

6. Discussion

The two major goals of this evaluation were:
(1) to generate an evaluation methodology for a
malleable, history-dependent piece of software,
and (2) to test how a specific piece of web-based
software (i.e., PackHunter) performed. Our
approach accomplished both tasks. This paper
outlined one route for evaluation of a history-
dependent application that included small sample
sizes, within-subjects experimental designs,
objective user-centered metrics, and tool-
manipulations that allowed the database to be
reset to overcome problems with adaptation
involved with iterative testing. We also
demonstrated that a specific feature of a specific
tool (i.e., the find related collaborator feature of
PackHunter) reliably improved participants'
performance on test questions when compared to
the control test that did not use the RC feature.

 Participants' improvement on test
performance when using RC suggests that
participants were able to find more relevant
information when they had access to related but
not identical searches in the same general topic
area. These results support the notion that
dynamic, history-dependent tools can be
evaluated without using a large subject pool if
careful planning is made in the development of
the experimental protocol and if carefully
structured, multiple background databases can be
used.

 We were surprised the CB function, that
provided users with information about other
participants’ prior searches on an identical topic,
did not improvement searching performance.
Yet, for those users with the RC function, that
had the benefit of seeing the searches of other
users in a related but not identical topic, did
show improvement. It is possible that seeing
websites and information others have previously
17.00 (C) 2004 IEEE 9

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
explored with the CB function made users less
likely to explore on their own; maybe there was a
creative aspect to seeing results from searches of
similar but not identical topics that stimulated
people to expand their exploration of alternatives
beyond their normal horizons.

Future work could focus on obtaining a better
understanding of the effects of closing the loop
in a history-dependent tool such PackHunter.
Since one of the ultimate goals of the
PackHunter tool was to create a positive
feedback cycle, whereby information provided
by the tool at one point in time impacts the
information it can provide in the future. Positive
feedback cycles such as this occur in nature in
the form of autocatalytic systems and can even
be observed in economic systems [1]. If we are
to truly understand the impact of a tool such as
PackHunter, we may need to understand the
dynamics of naturalistic positive feedback cycles
as well. In fact, our current methodology
(involving saving and reloading of fixed
databases) precluded an evaluation of the
positive-feedback effect. Further research is
recommended to develop such a methodology
and to see if these positive feedback effects do in
fact amplify the gains provided by PackHunter.

Future work should also include a blend of
information-centered metrics that could be used
in conjunction with user-centered metrics. While
information-centered metrics may be useful
during future evaluations of PackHunter and
other history dependent tools (since it provides
an unbiased estimation of information content),
the user-centered metrics used here gave us the
best compromise of efficiency and ease-of-
implementation. Other metrics focused on
measuring tool performance across other
dimensions, such as subject-matter (topic)
specificity or the amount of necessary user-user
overlap required to produce useful information
are also an empirical questions that may provide
for fruitful future research.

In the end, our evaluation protocol overcame
many of the difficulties that arise when
performing empirical evaluations of malleable
software, such as first- and higher-order history
0-7695-2056-1/04
dependence, retrograde and anterograde effects,
and critical-mass effects. The development of
our evaluation procedure was also pragmatic, as
it took into account realistic constraints of rapid,
real-world software development cycles, such as
brief deadlines and small test-user populations.
Ideally, our empirical evaluation would have
utilized more subjects, more test conditions, and
been sensitive to positive-feedback effects, but
nevertheless, we attained our expressed goal of
defining and implementing a feasible set of
methodological procedures and metrics designed
to circumvent the complexity of evaluating
adaptive, history-dependent tools.

7. References

 [1] Arthur, B. (2000) Positive feedbacks in the
economy. Scientific American, 262, pp. 92-99.

 [2] Chin, D. (2001) Empirical evaluation of user
models and user-adapted systems. User Modeling
and User-Adapted Interaction, 11, pp. 181-194.

 [3] Henry, P. (1998) User-centered information design
for improved software usability. Artech House.

 [4] Kaplan, C., Fenwick, J., and Chen, J. (1993)
Adaptive hypertext navigation based on user goals
and context. User Modeling and User-Adapted
Interaction, 3(3), pp. 193-220.

 [5] Keszenheimer, L. and Lieberherr, K. (1994)
Incremental testing of adaptive software. Technical
Report NU-CCS-94-22, Northeastern University,
November, 1994.

 [6] Newell A. & Simon H. (1972) Human Problem
Solving, Prentice-Hall.

 [7] Payton, D., Daily, M., and Martin, K. (1999).
Dynamic Collaborator Discovery in Information
Intensive Environments. ACM Computing Surveys,
31(2), June 1999

 [8] Höök, K., Karlgren, J., Waern, A., Dahlbäck, N.,
Jansson, C., Karlgren, K., Lemaire, B. (1996) A
glassbox approach to hypermedia. Journal of User
Modeling and User-Adaptive Interaction, 6, pp.
157-184.

 [9] Woodward, J., Bonett, D., and Brecht, M. (1990).
Introduction to linear models and experimental
design. Harcourt Brace Academic Press, Florida.
 $17.00 (C) 2004 IEEE 10

	HICSS37 2004
	Return to Previous View

